損失関数

備忘録_ニューラルネットワークの学習

ニューラルネットワークの学習の手順(確率的勾配法(SGD)) 確率的とは、「確率的に無造作に選び出した」という意味である。 ステップ1 ミニバッチ 訓練データの中からランダムに一部のデータを選び出す。その選ばれたデータをミニバッチと言い、ここでは、そのミニバッチの損失関数の値を減らすことを目的とする。 ステップ2 勾配の算出 ミニバッチの損失関数を減らすために、各重みパラメータの勾配を求める。勾配 […]

備忘録_勾配

すべての変数の偏微分をベクトルとして纏めたものを勾配という。 Pythonで実装すると・・・ np.zeros_like(x) xと同じ形状の配列で、その要素が全て0の配列 今回の例で使用する関数     Pythonで実装した場合 (3, 4)、(0, 2)、(3, 0)での勾配 ※実際は[6.00000000000378, 7.999999999999119]という値が得ら […]

備忘録_損失関数

損失関数を手掛かりにニューラルネットワークの最適なパラメータを探索する 任意の関数を用いることができるが、一般的には2乗和誤差や交差エントロビー誤差などを用いる 性能の”悪さ”を示す指標 教師データに対してどれだけ適合していないか、どれだけ一致していないかを表す 2乗和誤差 数式で表すと・・・     ・・・ニューラルネットワークの出力 ・・・教師データ ・・・データの次元数 […]